Penalized Principal Component Regression on Graphs for Analysis of Subnetworks

نویسندگان

  • Ali Shojaie
  • George Michailidis
چکیده

Network models are widely used to capture interactions among component of complex systems, such as social and biological. To understand their behavior, it is often necessary to analyze functionally related components of the system, corresponding to subsystems. Therefore, the analysis of subnetworks may provide additional insight into the behavior of the system, not evident from individual components. We propose a novel approach for incorporating available network information into the analysis of arbitrary subnetworks. The proposed method offers an efficient dimension reduction strategy using Laplacian eigenmaps with Neumann boundary conditions, and provides a flexible inference framework for analysis of subnetworks, based on a group-penalized principal component regression model on graphs. Asymptotic properties of the proposed inference method, as well as the choice of the tuning parameter for control of the false positive rate are discussed in high dimensional settings. The performance of the proposed methodology is illustrated using simulated and real data examples from biology.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An application of principal component analysis and logistic regression to facilitate production scheduling decision support system: an automotive industry case

Production planning and control (PPC) systems have to deal with rising complexity and dynamics. The complexity of planning tasks is due to some existing multiple variables and dynamic factors derived from uncertainties surrounding the PPC. Although literatures on exact scheduling algorithms, simulation approaches, and heuristic methods are extensive in production planning, they seem to be ineff...

متن کامل

Methods for regression analysis in high-dimensional data

By evolving science, knowledge and technology, new and precise methods for measuring, collecting and recording information have been innovated, which have resulted in the appearance and development of high-dimensional data. The high-dimensional data set, i.e., a data set in which the number of explanatory variables is much larger than the number of observations, cannot be easily analyzed by ...

متن کامل

Penalized Estimators in Cox Regression Model

The proportional hazard Cox regression models play a key role in analyzing censored survival data. We use penalized methods in high dimensional scenarios to achieve more efficient models. This article reviews the penalized Cox regression for some frequently used penalty functions. Analysis of medical data namely ”mgus2” confirms the penalized Cox regression performs better than the cox regressi...

متن کامل

Penalized spline models for functional principal component analysis

We propose an iterative estimation procedure for performing functional principal component analysis. The procedure aims at functional or longitudinal data where the repeated measurements from the same subject are correlated. An increasingly popular smoothing approach, penalized spline regression, is used to represent the mean function. This allows straightforward incorporation of covariates and...

متن کامل

Penalized Bregman Divergence Estimation via Coordinate Descent

Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010